Untersuchungen zur 6-Hydroxy-indol-Bildung bei der Nenitzescu-Reaktion. VI [1]

Cyclisierung von β -[(1,4-Chinon-2-yl)methyl]-enaminon-Derivaten

U. Kuckländer* und U. Lessel

Düsseldorf, Institut für Pharmazeutische Chemie der Heinrich-Heine-Universität

Eingegangen am 20. November 1998 bzw. 29. September 1999

Investigation on the Formation of 6-Hydroxyindole in the Nenitzescu Reaction. VI Cyclization of β -[(1,4-Quinon-2-yl)methyl]-enaminon Derivatives

Keywords: Cyclizations, Quinones, Spiro compounds, Enaminone, Quinolines

Abstract. Starting from 2,5-bisbenzyloxy-4-methyl-benzaldehyd 2-(3-amino-2-acetyl-but-2-enyl)-5-methyl[1,4]benzoquinones 9a-e are synthesized as model compounds in order to study the ambident reactivity of enaminones and quinones. Spontaneus cyclization of 9b-e in ethanol or acetic acid to

Die Umsetzung von un- bzw. *N*-mono-substituierten Enaminonen **4** mit *p*-Chinonen **3** führt in der Regel zu 5-Hydroxy-indolen **5** und wird als Nenitzescu-Reaktion bezeichnet [2]. Hierbei findet primär eine orbitalkontrollierte Reaktion der weichen Zentren (Enamin- β -C und Chinon-C-2; 1,4-Addition) statt. Im zweiten Schritt erfolgt die Cyclisierung durch ladungskontrol1-aza-spiro[4,5]deca-2,7-dien-6,9-dion **20b**-e in good yield is observed. 6-Hydroxy-3-acetyl-quinoline **21** is obtained from **9a**. In one case (**9c**) 2-acetyl-3-benzylamino-7-hydroxy-naphthalene (**17**) was formed as by-product. **9d** in alkoholic perchloric acid leads to quinolinium salt **18** in low yield.

lierte Reaktion der harten Zentren (Enaminon-Stickstoff und Chinoncarbonyl) [3].

In einigen Fällen wurde insbesondere bei *N*-Aryl-enaminen die Bildung von 6-Hydroxy-indolen **6** beobachtet [4–8]. Diese entstehen nicht durch primäre 1,4-Addition des Stickstoffs an Chinon, da die unabhängig, synthetisierten Zwischenprodukte **1** nicht zum Indol **6** cyclisiert werden können [9], sondern durch eine Reaktion des Enaminon- β -C-Atoms am Chinon-carbonyl, da entsprechende Intermediate **2** eine Ringschlußreaktion zu 6-Hydroxyindolen **6** eingehen [10].

FULL PAPER

Mit dem Ziel, die Nenitzescu-Reaktion regioselektiv durchführen zu können, haben wir die Synthese von β -Chinonylmethylenaminonen 9 in Angriff genommen, um so näheren Aufschluß über die ambidente Reaktivität der Enaminone und Chinone erhalten zu können. Bei diesen Modellverbindungen 9 ist eine Cyclisierung über das Enamin- β -C-atom wegen der entstehenden kleinen Ringe wenig wahrscheinlich, so daß die Reaktion auf den Stickstoff begrenzt bleibt und eine 1,2-Addition am Chinon-Carbonyl zu 7 bzw. eine 1,4-Addition an C-2 oder C-3 unter Bildung von 10 oder 8 zu erwarten ist.

Darstellung und Struktur der Chinonylmethylenaminone

Zur Darstellung der Chinonylmethyl-enaminone 9a-ewurde das 1,3-Diketon 11 als Schlüsselverbindung sowohl durch Knoevenagel-Kondensation des 2,5-Bisbenzyloxy-4-methyl-benzaldehyds mit Acetylaceton zu 3-[2,5-Bisbenzyloxy-4-methyl]-benzyliden-pentan-2,4dion und Hydrierung, als auch durch Alkylierung von Acetylaceton mit dem 2,5-Bisbenzyloxy-4-methyl-benzylchlorid 3 [11a] dargestellt.

Das Diketon fällt als Gemisch der Keto- (11) und Enol-Form (13) an. Die Gleichgewichtseinstellung erfolgt in CHCl₃ sehr langsam, so daß eine Trennung der beiden Tautomeren gelang. Das enolische Hydroxyl tritt im ¹H-NMR-Spektrum von 13 bei 16,8 ppm auf, während das Signal für die Methylengruppe der Keto-Form

11 bei 3,07 ppm als Dublett und für die CH-Gruppierung bei 4,05 ppm als Triplett (J = 7 Hz) erscheint. In CDCl₃ wurden nach 10 Tagen 75% Diketon **11** und 25% Enol **13** beobachtet. Das durch katalytische Hydrierung aus dem Benzylether gebildetete Phenol **12** liegt z.T. als Diastereomeren-Gemisch des Ketals **14** vor, wie anhand der ¹³C-NMR-Signale bei 94,5 bzw. 96,6 ppm für die acetalischen C-Atome belegt werden kann.

Die *O*-benzylierte β -Dicarbonylverbindung **11/13** wurde mit Aminen zu den Enaminen **15a**–**e** umgesetzt, die als Z-konfigurierte β -Keto-enamine vorliegen, wie aus der Lage der Carbonylbande im IR-Spektrum bei 1 590–1 600 cm⁻¹ und der chemischen Verschiebung der Signale für die CH₃–C=C- bzw. der NH-Gruppe im ¹H-NMR-Spektrum (CDCl₃) bei δ = 1,6–1,8 bzw. 12,0– 14,0 ppm hervorgeht. Die Etherspaltung mittels katalytischer Hydrierung liefert die Hydrochinone **16a**–**e**. Durch Oxidation mit Ag₂O können schließlich die Chinone **9a**–**e** dargestellt und isoliert werden, wenn in aprotischen Lösungsmitteln gearbeitet wird. In protischen Lösungsmitteln oder bei den dünnschichtchromatographischen Versuchen cyclisieren die erhaltenen Chinone **9a–e** spontan.

Der Nachweis der ringoffenen Struktur der Chinone 9 gelingt ¹H-NMR-spektroskopisch in CDCl₃ aufgrund der allylischen Kopplung der Chinon-Protonen mit der Methyl- bzw. Methylen-Gruppe. Die intakte Chinon-Struktur wird ferner durch das ¹³C-NMR-Spektrum mit Signalen für die beiden Carbonyl-C-atome C-1 und C-4 jeweils als Singulett bei $\delta = 188,1-188,4$ ppm und Dubletts für C-3 und C-6 belegt. Wir schließen aufgrund der gelborangen bis roten Farbe der Feststoffe **9a–e** und der bathochromen Verschiebung sowie der Intensitätszunahme der langwelligen Absorption ($\lambda_{max} = 400 -$ 550 nm/log $\varepsilon = 2,4-1,0$) in den UV-VIS-Spektren in CHCl₃ im Vergleich zu den berechneten "Additionsspektren" von Chinon und Enamin auf das Vorliegen von CT-Komplexen von 9. Es besteht sowohl die Möglichkeit der Bildung von intramolekularen als auch von intermolekularen CT-Komplexen. Wir nehmen aufgrund der Ähnlichkeit der UV-VIS-Spektren (in CHCl₃) von 9b und 3,5-Diacetyl-1-(5-methyl-cyclohexa-2,5-dien-1,4-dion-2-yl-methyl-1,2,3,4-tetrahydropyridin [11b] mit analogen CT-Banden (und zwar für 9b bei $\lambda_{max} =$ 420 nm (lg ε = 1,87) und 520 (1,73) sowie 437 (2,35) und 522 (2,42) für das Chinonylmethyl-tetrahydropyridin-Derivat) eine ähnliche doppelte intermolekulare CT-Wechselwirkung zwischen Chinon- und Enaminstruktur bei zwei Molekülen 9b an.

Cyclisierung der Chinonylmethylenaminone

Die Chinonylmethyl-enaminone 9a-e liegen auf Grund der ¹H-NMR- und IR-spektroskopischen Eigenschaften als Feststoff und in aprotischen Lösungsmitteln Z-konfiguriert vor.

In protischen Lösungsmitteln ist bei Enaminonen ein Übergang zur *E*-Konfiguration zu erwarten [12]. Entsprechend dürften sich die Verbindungen 9a-e verhal-

ten, zumal die Unterschiede der berechneten (MOPAC 6.0/ MNDO bzw. AM1) Bildungsenthalpien mit 1,2 bis 3,6 kcal/mol klein sind. Die räumliche Nähe von Stickstoff und Chinon-Kohlenstoff in der *E*-Form begünstigt die nahezu quantitative Cyclisierung, wie ¹H-NMR-spektroskopisch in CD₃OD verfolgt und durch Isolierung der Produkte **20** sichergestellt werden kann.

Die Cyclisierung des *N*-unsubstituierten Chinonylmethyl-enaminons **9a** in Ethanol verläuft unter Bildung des Chinolins **21**, wie aus Massenspektrum und Elementaranalyse sowie dem ¹H-NMR-Spektrum (in D₆-DMSO) mit Signalen für die aromatischen Protonen bei 7,23 (5-H), 7,69 (8-H) und 8,65 ppm (4-H) jeweils als Singulett hervorgeht.

Die *N*-Alkyl- und *N*-Aryl-substituierten Chinone **9b**– **e** cyclisieren in Ethanol zu den Spiroverbindungen **20b**– **e** und zwar durch 1,4-Addition des Enamin-Stickstoffs an die C=C-Bindung. Die Struktur **20** kann im ¹H-NMR-Spektrum durch das Auftreten eines AB-Systems für die Protonen der Methylen-Gruppe und im ¹³C-NMR jeweils durch Signale für Spiroatome bei 74–76 ppm als Singulett belegt werden.

In Eisessig verläuft die Reaktion ebenfalls unter Bildung der Spiroverbindungen **20**. Es konnte zusätzlich ein Nebenprodukt isoliert werden, dem wir die Struktur des Naphthalin-Derivates **17** zuweisen. Das beobachtete UV-VIS-Maximum bei 460 nm/lg ε = 3,41) in CHCl₃ steht in guter Übereinstimmung mit den Inkrement-Berechnungen nach Woodward und dem Vergleich von experimentell gefundenen Werten [13] für 2-Hydroxy-3-acetyl-naphthaline. **17** dürfte durch Cyclisierung des Enamin-Tautomers **19** unter 1,2-Addition entstanden sein, da in β -Stellung mit voluminösen Resten substituierte Enaminone zu entsprechender Tautomerisierung neigen [14, 15].

Durch Ringschluß von **9c** in alkoholischer Perchlorsäure konnte das *O*-protonierte Perchlorat der Spiroverbindung **20c** erhalten werden.

Nach Cyclisierung von **9d** in alkoholischer Perchlorsäure läßt sich jedoch nur das Chinoliniumsalz **18** in geringer Ausbeute (8% d.Th.) isolieren.

Theoretische Untersuchungen

Eine Reaktion des Enaminon- β -C-Atoms mit den elektrophilen Zentren des Chinons kann im Fall der Chinonylmethyl-enaminone **9** aufgrund der dann gebildeten thermodynamisch ungünstigen kleinen Ringe ausgeschlossen werden.

Die Berechnung der Ladungsdichten bei 9a-e führt zu höheren positiven Werten für das Chinon-carbonyl-C-Atom bzw. negativen Werten von Enaminon-Stickstoff, so daß eine entsprechende Cyclisierung unter 1,2-Addition entsprechend der Terminologie nach Pearson als hart-hart-Reaktion wahrscheinlich ist.

Falls das so gebildete 1,2-Addukt, wie im Falle R =H, unter Wasserabspaltung und Aromatisierung weiterreagieren kann, entsteht das Chinolin 21. Ansonsten bilden sich in der Praxis die Spiroverbindungen 20 durch Angriff des Stickstoffs am Ort zweitniedrigster Elektronendichte (C-2), wohl aufgrund der günstigen sterischen Verhältnisse in der CT-stabilisierten Konformation 9bE (s. Abb.1) mit einem Abstand zwischen N und C-2 von 3,014 Å (MNDO), 3,24 Å (AM1) bzw. 3,044 Å (PC-Model 5.1). Dies kann als Ursache dafür angesehen werden, daß die Umsetzung nahezu quantitativ erfolgt und keine Addition an C-3 stattfindet. Auffällig ist, daß im Gegensatz zur intermolekularen Reaktion (6-Hydroxy-indolbildung) die 1,4-Addition unabhängig von der Substitution am Stickstoff erfolgt. Die Beobachtungen stehen in Übereinstimmung damit, daß die 6-Hydroxy-indolbildung durch den ersten Schritt der Enamin-Addition gesteuert wird.

Abb. 1 Ortep-plot des MOPAC-Modells (MNDO) von (*Z*)-5-Methyl-2-{[-(*N*-methylamino)-2-oxo-pent-3-en-3-yl]-methyl}-cyclohexa-2,5-dien-1,4-dion (**9bE**)

Die durchgeführten Untersuchungen belegen die Eigenschaften des Enaminon-Stickstoffs sowohl als hartes als auch als weiches Nucleophil, so daß es einerseits zu einer 1,2-, andererseits auch zu einer 1,4-Addition an das Chinon-Gerüst kommen kann.

Beschreibung der Versuche

Schmelzpunkte.: Gallenkamp, unkorr. – IR: Perkin-Elmer-IR-Spektralphotometer 177, Wellenzahlen v [cm⁻¹]. – MS: Finnigan 3500, Ionisierungsenergie 70 eV. – UV/VIS: UV-VIS-Spektralphotometer Perkin-Elmer 550 SE. – ¹H-NMR: Varian FT-80A und Bruker AC-200. – ¹³C-NMR: Varian FT-80A, int. Standard TMS; ppm, δ -Skala. DC: DC-Alufolien, Kieselgel 60 F₂₅₄ (Merck). Detektion: UV-Löschung bei 254 nm. SC: Sorbens Kieselgel, Korngröße 0,063 – 0,20 mm. Elementaranalysen: Zentrale Einrichtung Chemie/Pharmazie "Mikroanalyse" der Universität Düsseldorf.

3-[2,5-Bis(benzyloxy)-4-methyl]benzyliden-pentan-2,4-dion

0,50 g (1,5 mmol) 2,5-Bisbenzyloxy-4-methyl-benzaldehyd [16], 0,15 g (1,5 mmol) Pentan-2,4-dion, 0,7 g Eisessig und 0,2 g Piperidin werden in 35 ml Benzol 6 h erhitzt. SC-Trennung: Kieselgel, Länge 10 cm, Ø 3 cm, Petrolether (40–60 °C)/(C₂H₅)₂O (60+40), $R_f = 0,28$. Gelbe Kristalle vom *Fp*. 103–104 °C [(C₂H₅)₂O]. Ausb. 0,18 g (29%). – IR (KBr): ν /cm⁻¹ = 1710 (s), 1640 (s, C=O). – MS (110 °C): m/z (rel. Int. (%)) = 414 (0,6; M⁺), 307 (0,9), 281 (0,6), 91 (100), 77 (1), 65 (9), 43 (9). – ¹H-NMR (CDCl₃): δ /ppm = 7,85 (s, 1H, Aryl-C<u>H</u>=C–CO), 7,38 ["s", br, 10H aromat. (Bzl; 2×)], 6,82 ["s", br, 2H, Aryl-3-H, -6-H (Hydrochinon)], 5,09 (s, 2H), 4,97 (s, 2H; OCH₂), 2,34 (s, 3H), 2,28 (s, 3H; H₃C–CO), 2,12 (s, 3H, Aryl-C<u>H</u>₃).

 $\begin{array}{cccc} C_{27}H_{26}O_4 & \mbox{ Ber.:} & C \ 78,22 & \mbox{ H} \ 6,32 \\ (414,5) & \mbox{ Gef.:} & C \ 78,47 & \mbox{ H} \ 6,43. \end{array}$

3-{[2,5-Bis(benzyloxy)-4-methylphenyl]methyl}-pentan-2,4dion (**11**)

a) 4,15 g (10,0 mmol) 3-[2,5-Bis(benzyloxy)-4-methyl]benzyliden-pentan-2,4-dion wird mit 50 mg PtO₂ in abs. Tetrahydrofuran bei Raumtemp. und Normaldruck in einer H2-Atmosphäre bis zur Entfärbung geschüttelt. Zu dem in wenig CH₃OH gelösten, eingeengten Filtrat gibt man in Anlehnung an Lit. [17] gesättigte methanolische Cu(OAc)₂-Lösung. Der Niederschlag wird in 8N H₂SO₄ digeriert. Man extrahiert mit Diethylether, trocknet über Na₂SO₄ und engt i. Vak. ein. b) Zu 0,64 g (5,7 mmol) Kalium-tert-butanolat in 25 ml Pentan-2,4-dion gibt man 2,00 g (5,70 mmol) 2,5-Bisbenzyloxy-4-methyl-benzylchlorid 3 [11] und erhitzt 6 h. Man gießt auf Eis, extrahiert mit Diethylether, trocknet über Na₂SO₄ und entfernt das Solvens i. Vak. Weiße Kristalle vom Fp. 70-90 °C [$(C_2H_5)_2O$ oder CH₃OH]; es handelt sich um das Tautomerengemisch 11 und 13 wechselnder Zusammensetzung. Ausb. a) 66%), b) 1,90 g (81%). – IR (KBr): $\nu/cm^{-1} = 1690$ (s, C=O). – MS (120 °C): m/z (rel. Int. [%]) = 416 (0,9; M⁺), 308 (0,2), 91 (100), 77 (4), 65 (11), 43 (30). - ¹H-NMR (CDCl₃): δ /ppm = 7,46–7,29 ["s", 10H aromat. (Bz; 2×)], 6,76 (s, 1H), 6,69 [s, 1H; Aryl-3-H, -6-H (Hydrochinon)], 5,02 (s, 2H), 5,00 (s, 2H; OCH₂), 4,05 (t, 1H, CO-CH-CO; ${}^{3}J = 7,0$ Hz), 3,07 (d, 2H, Aryl–CH₂; ${}^{3}J = 7,0$ Hz), 2,23 (s, 3H, Aryl-CH₃), 2,00 ["s", 6H, H₃C-CO (2×)]. Nach 11d finden sich auch Signale der Enolform 13; die Diketoform 11 überwiegt im Verhältnis von ca. 3:1.

$$\begin{array}{rrrr} C_{27}H_{28}O_4 & \text{Ber.:} & C \ 77,86 & \text{H} \ 6,78 \\ (416,5) & \text{Gef.:} & C \ 78,05 & \text{H} \ 6,75. \end{array}$$

3-[(2,5-Dihydroxy-4-methyl-phenyl)-methyl]-pentan-2,4dion (**12**)

3,40 g (8,2 mmol) 3-{[2,5-Bis(benzyloxy)-4-methylphenyl] methyl}-pentan-2,4-dion (**11**) werden mit 10% Pd/C in 100 ml abs. Tetrahydrofuran in einer H₂-Atmosphäre geschüttelt. Das Filtrat wird i. Vak. bei Raumtemp. eingeengt. Weißes Pulver vom *Fp.* 80 °C [(C₂H₅)₂O; Lit. [18]: 110 °C]. Ausb. 0,94 g (49%). – IR (KBr): $\nu/\text{cm}^{-1} = 3470$ (s), 3460 (sh), 3340 [sh, OH (**14**)], 1730 [s, C=O (**12**)], 1680 (s, C=O). – MS (120 °C): m/z (rel. Int. [%]) = 236 (2; M⁺), 219 (1), 194 (6), 176 (5), 161 (5), 150 (4), 137 (14), 91 (7), 77 (6), 43 (100). – ¹H-NMR ([D₆]DMSO): δ /ppm = 8,62 [s, 2H, OH (**5**; 2×);

austauschend], 8,40 [s, 1H, OH (14); austauschend], 6,56 (s), 6,55 [s; 1H, OH (14; Diastereomerenpaar); austauschend], 6,47-6,39 [m, 4H, Aryl-3-H, -6-H (5 und 7)], 4,11 [t, 1H, Aryl–CH₂–C<u>H</u> (12); ${}^{3}J$ = 7,4 Hz], 3,07 [s, br, 1H, Aryl–CH₂– C<u>H</u> (**12**)], 2,81 [d, 2H, Aryl–C<u>H</u>₂–CH (**12**); ${}^{3}J$ = 7,4 Hz], 2,69– 2,64 [m, 2H, Aryl-CH₂-CH (14; Diastereomerenpaar)], 2,20 (s, 3H), 2,08 (s, 6H), 2,02 (s, 3H), 1,99 [s, 3H, Aryl-CH₃ und H₂C-CO (12 und 14)], 1,45 [s, 3H, H₂C-C-OH (7)]. Es liegt ein 1:1-Gemisch aus 12 und 14 vor. $-^{13}$ C-NMR [D₆]DMSO): δ /ppm = 208,40 (s), 204,43 (s; C=O), 191,66 [s, C=O (Enolform)], 108,31 [s, CO–C=C–OH (Enolform)], 96,58 (s), 94,50 [s, HO-C(CH₃)-O (14; Diastereomerenpaar)], 66,34 [d, Aryl-CH₂-CH (12)], 55,04 (d), 53,10 [d; Aryl-CH₂-CH (14; Diastereomerenpaar)]. Singuletts bei δ /ppm = 148,79, 148,72, 147,85, 147,51, 147,24, 146,96, 145,23, 144,28 für Aryl-C-O (alle Formen). Weitere Signale bei δ /ppm = 123,46, 123,03, 122,89, 122,48, 122,04, 121,53, 118,31, 117,93, 117,84, 117,56, 117,19, 117,10, 116,44, 114,17, 114,08, 113,69, 31,37, 29,77 (q), 28,92, 28,31 (t), 26,95, 25,84, 25,43, 24,44, 22,78 (q), 22,18, 15,70 (q), 15,57 (q). Es liegt ein Gemisch aus 12, der Enolform und dem Diastereomerenpaar von 14 vor. Ber.: C 66,09 H 6,83 $C_{13}H_{16}O_4$ Gef.: C 66,11 H 6.88. (236,3)

3-{[2,5-Bis(benzyloxy)-4-methylphenyl]methyl}-4-hydroxypent-3-en-2-on (13)

Siehe **11**: IR (KBr): $\nu/cm^{-1} = 3650 - 3200$ (OH), 1650 - 1550(s, C=O, C=C). $^{-1}$ H-NMR (CDCl₃): δ /ppm = 16,81 (s, 1H, OH; austauschend.), 7,38 - 7,31 [m, 10H aromat. (Bzl; 2×)], 6,79 (s, 1H), 6,46 [s, 1H; Aryl-3-H, -6-H (Hydrochinon)], 5,03 (s, 2H), 4,98 (s, 2H; OCH₂), 3,52 (s, 2H, Aryl-C<u>H₂</u>), 2,27 (s, 3H, Aryl-C<u>H₃</u>), 1,90 ("s", 6H, H₃C-CO, H₃C-C-OH). C₂₇H₂₈O₄ Ber.: C 77,86 H 6,78 (416,5) Gef.: C 77,72 H 6,84.

(Z)-4-Amino-3-{[2,5-bis(ber	nzyloxy)-4-methyl-phenyl]-me-
thyl}-pent-3-en-2-on (15a)	

2,7 g (6,5 mmol) der Verbindung **11** werden mit einer ethanolischen NH₃-Lösung erhitzt und i. Vak. eingeengt. Hellbeiges Pulver vom *Fp.* 112 °C (C_2H_5OH). Ausb. 1,85 g (69%). – IR (KBr): *v*/cm⁻¹ = 3480 (w), 3300 (br, NH), 1605 (s), 1575 (sh, N–C=C–C=O, C=C). – MS (140 °C): *m*/*z* (rel. Int. [%]) = 415 (0,7; M⁺), 372 (0,2), 324 (1), 308 (0,8), 216 (2), 190 (2), 91 (100), 77 (3), 65 (8), 43 (8). $C_{27}H_{29}NO_3$ Ber.: C 78,04 H 7,03 N 3,37 (415,5) Gef.: C 78,17 H 6,96 N 3,35.

(Z)-3-{[2,5-Bis(benzyloxy)-4-methylphenyl]methyl}-4-(N-methyl-amino)-pent-3-en-2-on (**15b**)

Aus 1,8 g (4,3 mmol) der Verbindung **13** und Methylamin, wie bei **15a** beschrieben. Weißes Pulver vom *Fp.* 147 °C (C_2H_5OH). Ausb. 1,1 g (59%). – IR (KBr): $\nu/cm^{-1} = 3600-3300$ (NH), 1 600 (s), 1 585 (sh), 1 550 (s, br, N–C=C–C=O, C=C). – MS (180 °C): m/z (rel. Int. [%]) = 429 (0,6; M⁺), 386 (0,6), 374 (3), 216 (0,3), 204 (0,8), 91 (100), 77 (2), 65 (6), 56 (3), 43 (7). $C_{28}H_{31}NO_3$ Ber.: C 78,29 H 7,27 N 3,26 (429,6) Gef.: C 78,38 H 7,49 N 3,05.

(Z)-4-(N-Benzyl-amino)-3-{[2,5-bis(benzyloxy)-4-methyl-
phenyl]-methyl}-pent-3-en-2-on (15c)

4,0 g (9,6 mmol) **11** werden mit 1,2 g (11,2 mmol) Benzylamin in 60 ml C₂H₅OH 8 h erhitzt und i. Vak. eingeengt. Weißes Pulver vom *Fp.* 90 °C [(C₂H₅)₂O]. Ausb. 4,24 g (87%). – IR (KBr): $\nu/\text{cm}^{-1} = 3\ 600-3\ 300$ (NH), 1595 (s, br), 1565 (s), 1555 (sh, N–C=C–C=O, C=C). – MS (180°C): m/z (rel. Int. [%]) = 505 (0,04; M⁺), 462 (0,1), 414 (0,1), 216 (0,4), 188 (0,7), 107 (1), 106 (2), 105 (1), 91 (100), 77 (2), 65 (7), 43 (7).

 $\begin{array}{cccc} C_{34}H_{35}NO_3 & Ber.: & C \ 80,76 & H \ 6,98 & N \ 2,77 \\ (505,7) & Gef.: & C \ 80,99 & H \ 7,06 & N \ 2,62. \end{array}$

(Z)-3-{[2,5-Bis(benzyloxy)-4-methylphenyl]methyl}-4-[N-(4-methyl-phenyl)-amino]-pent-3-en-2-on (15d)

2,50 g (6,00 mmol) der Verbindung **11** werden mit 0,77 g (7,2 mmol) *p*-Toluidin und katalytischen Mengen *p*-Toluolsulfonsäure in CHCl₃ 8 h am Wasserabscheider erhitzt. Man engt i. Vak. ein und extrahiert mit Petrolether (40–60 °C). Hellgelbes Pulver vom Fp. 107 °C (C₂H₅OH). Ausb. 2,45 g (81%). – IR (KBr): *v*/cm⁻¹ = 1590 (s), 1585 (sh), 1550 (s, N–C=C–C=O, C=C). – MS (150 °C): *m*/*z* (rel. Int. [%]) = 505 (0,1; M⁺), 462 (0,3), 132 (2), 107 (4), 106 (5), 105 (2), 91 (100), 77 (3), 65 (8), 43 (10). C₃₄H₃₅NO₃ Ber.: C 80,76 H 6,98 N 2,77

(505,7) Gef.: C 80,46 H 7,11 N 2,48.

(Z)-3-{[2,5-Bis(benzyloxy)-4-methyl-phenyl]-methyl}-4-[N-(3-methoxy-phenyl)-amino]-pent-3-en-2-on (**15e**)

Aus 1,90 g (4,56 mmol) der Verbindung **11** und 0,67 g (5,4 mmol) *m*-Anisidin, wie bei **15d** beschrieben. Weißes Pulver vom *Fp*. 92 °C [(C₂H₅)₂O]. Ausb. 1,42 g (60%). – IR (KBr): $\nu/\text{cm}^{-1} = 1590$ (s, br), 1 550 (m, N–C=C–C=O, C=C). – MS (160 °C): m/z (rel. Int. [%]) = 521 (0,2; M⁺), 478 (1), 430 (0,1), 216 (2), 188 (1), 175 (14), 148 (12), 123 (2), 107 (6), 91 (100), 77 (9), 65 (14), 43 (9). C₃₄H₃₅NO₄ Ber.: C 78,28 H 6,76 N 2,69

(521,7) Gef.: C 78,44 H 6,80 N 2,65.

(Z)-4-Amino-3-[(2,5-dihydroxy-4-methyl-phenyl)-methyl]pent-3-en-2-on (**16a**)

2,20 g (5,29 mmol) 15a werden in 100 ml abs. Tetrahydrofuran mit 10% Pd/C bei Raumtemp. in einer H2-Atmosphäre geschüttelt. Das Filtrat wird bei Raumtemp. i. Vak. eingeengt. Weißes Pulver vom Fp. 137–138 °C [(C₂H₅)₂O; Zers.]. Ausb. 1,10 g (88%). – IR (KBr): $\nu/cm^{-1} = 3410$ (s, br, NH, OH), 1600 (s, br, N–C=C–C=O, C=C). – MS (150 °C): m/z (rel. Int. [%]) = 235 (2; M⁺), 218 (5), 192 (6), 176 (67), 137 (23), 77 (19), 43 (100), 42 (73). $C_{13}H_{17}NO_3$ Н 7,28 Ber.: C 66,36 N 5.95 (235,3)Gef.: C 66,48 H 7,26 N 5,85.

(Z)-3-[(2,5-Dihydroxy-4-methyl-phenyl)-methyl]-4-(N-methylamino)-pent-3-en-2-on (**16b**)

Aus 0,93 g (2,2 mmol) **15b**, wie bei **16a** beschrieben. Weißes Pulver vom *Fp*. 145 °C [(C_2H_5)₂O; Zers.]. Ausb. 0,22 g (41%). – IR (KBr): $\nu/cm^{-1} = 3\,400$ (sh), 3 320 (s, br, NH, OH), 1 600 (s), 1 530 (s, N–C=C–C=O, C=C). – MS (190 °C): m/z (rel. Int. [%]) = 249 (4; M⁺), 218 (4), 206 (9), 190 (89), 137 (18), 112 (7), 98 (12), 91 (12), 77 (12), 56 (100), 43 (83).

$C_{14}H_{19}NO_{3}$	Ber.:	C 67,45	H 7,68	N 5,62
(249,3)	Gef.:	C 67,18	H 7,89	N 5,32.

(Z)-4-(N-Benzylamino)-3-[(2,5-dihydroxy-4-methyl-phenyl)methyl]-pent-3-en-2-on (16c)

Aus 4,20 g (8,31 mmol) **15c**, wie bei **16a** beschrieben. Hellgelbes Pulver vom *Fp*. 136 °C [(C_2H_5)₂O; Zers.]. Ausb. 2,26 g (84%). – IR (KBr): $\nu/cm^{-1} = 3430$ (s, br, NH, OH), 1 600 (s), 1 580 (s), 1 550 (sh), 1 540 (m, N–C=C–C=O, C=C). – MS (200 °C): m/z (rel. Int. [%]) = 325 (0,06; M⁺), 137 (6), 107 (6), 106 (10), 105 (10), 91 (41), 77 (15), 65 (100), 45 (82), 43 (47).

 $\begin{array}{cccc} C_{20}H_{23}NO_3 & Ber.: & C \ 73,82 & H \ 7,12 & N \ 4,30 \\ (325,4) & Gef.: & C \ 73,92 & H \ 7,39 & N \ 4,29. \end{array}$

(Z)-3-[(2,5-Dihydroxy-4-methyl-phenyl)-methyl]-4-[N-(4-methyl-phenyl)-amino]-pent-3-en-2-on (**16d**)

Aus 4,50 g (8,90 mmol) **15d**, wie bei **16a** beschrieben. Weißes Pulver vom *Fp.* 131 °C [(C_2H_5)₂O; Zers.]. Ausb. 1,74 g (60%). – IR (KBr): $\nu/cm^{-1} = 3360$ (s, br, OH, NH), 1590– 1570 (s, br), 1550 (sh, N–C=C–C=O, C=C). – MS (160 °C): m/z (rel. Int. [%]) = 325 (0,7; M⁺), 218 (6), 203 (10), 175 (16), 137 (15), 132 (50), 107 (67), 106 (75), 91 (92), 79 (16), 77 (33), 65 (38), 43 (100).

 $\begin{array}{cccc} C_{20}H_{23}NO_3 & \text{Ber.:} & C \ 73,82 & H \ 7,12 & N \ 4,30 \\ (325,4) & \text{Gef.:} & C \ 73,64 & H \ 7,02 & N \ 4,39. \end{array}$

(Z)-3-[(2,5-Dihydroxy-4-methyl-phenyl)-methyl]-4-[N-(3-methoxy-phenyl)-amino]-pent-3-en-2-on (**16e**)

Aus 2,20 g (4,22 mmol) **15e**, wie bei **16a** beschrieben. Weißes Pulver vom *Fp.* 130 °C $[(C_2H_5)_2O/Petrolether (40-60 °C)]$. Ausb. 0,85 g (59%). – IR (KBr): $\nu/cm^{-1} = 3360$ (s, NH, OH), 1 600 (sh), 1 580 (s), 1 530 (m, N–C=C–C=O, C=C). – MS (160 °C): m/z (rel. Int. [%]) = 341 (0,4; M⁺), 298 (1), 218 (4), 204 (8), 148 (69), 137 (20), 123 (47), 107 (50), 92 (47), 77 (78), 43 (100). C₂₀H₂₃NO₄ Ber.: C 70,36 H 6,79 N 4,10

(341,4) Gef.: C 70,26 H 6,73 N 4,06.

(Z)-2-[(4-Amino-2-oxo-pent-3-en-3-yl)-methyl]-5-methylcyclohexa-2,5-dien-1,4-dion (**9a**)

0,10 g (0,42 mmol) **16a** wird mit der äquimolaren Menge Ag₂O in 15 ml abs. Aceton bei Raumtemp. 4 h gerührt und i. Vak. bei Raumtemp. eingeengt. Rotorangenes Pulver vom *Fp.* 137 °C (Aceton; Zers.). Ausb. 0,06 g (60%). – IR (KBr): $\nu/\text{cm}^{-1} = 3280$ (s, br, NH), 1 660 [s, C=O (Chinon)], 1 620 (s, br, N–C=C–C=O, C=C). – UV (CHCl₃): $\lambda_{\text{max}} = 470$ nm (lg $\varepsilon = 1,67$; sh), 400 nm (1,87), 305 nm (4,10). – MS (140 °C): m/z (rel. Int. [%]) = 233 (8; M⁺), 216 (25), 190 (22), 175 (15), 77 (16), 43 (100), 42 (65). C₁₃H₁₅NO₃ Ber.: C 66,94 H 6,48 N 6,00

(233,3) Gef.: C 66,81 H 6,54 N 5,87.

(Z)-5-Methyl-2-{[4-(N-methylamino)-2-oxo-pent-3-en-3-yl]methyl}-cyclohexa-2,5-dien-1,4-dion (**9b**)

Aus 0,25 g (1,0 mmol) **16b**, wie bei **16a** beschrieben. Orangerotes Pulver vom *Fp*. 117 °C (Aceton; Zers.). Ausb. 0,10 g (40%). – IR (KBr): *v*/cm⁻¹ = 3 270 (w, NH), 1 660 (s), 1 655 (s), 1 650 [s, C=O (Chinon)], 1 605 (s), 1 570 (s, N–C=C–C=O, C=C). – UV (CHCl₃): $\lambda_{max} = 500-480$ nm (lg $\varepsilon = 1,73$; sh), 420 nm (1,87), 323 nm (4,22). – MS (170 °C): *m*/z (rel.

Int. [%]) = 247 (12; M⁺), 232 (1), 229 (3), 216 (18), 204 (26), 176 (11), 77 (12), 56 (100), 43 (71). $C_{14}H_{17}NO_3$ Ber.: C 68,00 H 6,93 N 5,66

(247,3) Gef.: C 68,21 H 6,78 N 5,74.

(Z)-2-{[4-(N-Benzylamino)-2-oxo-pent-3-en-3-yl]-methyl}-5methyl-cyclohexa-2,5-dien-1,4-dion (**9c**)

Aus 1,00 g (3,07 mmol) **16c**, wie bei **9a** beschrieben. Orange-farbiges Pulver vom *Fp*. 122 °C (Aceton; Zers.). Ausb. 0,95 g (96%). – IR (KBr): $\nu/\text{cm}^{-1} = 3280$ (br, NH), 1 660 (sh), 1 650 [s, C=O (Chinon)], 1 620 (sh), 1 600 (s), 1 570 (sh, N–C=C–C=O, C=C). – UV (CHCl₃): $\lambda_{\text{max}} = 490$ nm (lg $\varepsilon = 1,71$; sh), 415 nm (1,90), 325 nm (4,33). – MS (150 °C): m/z (rel. Int. [%]) = 323 (0,5; M⁺), 280 (1), 232 (0,8), 216 (6), 188 (3), 106 (8), 91 (100), 77 (5), 65 (14), 43 (15). C₂₀H₂₁NO₃ Ber.: C 74,28 H 6,55 N 4,33 (323,4) Gef.: C 74,29 H 6,80 N 4,13.

(Z)-5-Methyl-2-{4-[N-(4-methylphenyl)-amino]-2-oxo-pent-3-en-3-yl}-methyl-cyclohexa-2,5-dien-1,4-dion (**9d**)

Aus 0,93 g (2,9 mmol) **16d**, wie bei **9a** beschrieben. Orangefarbiges Pulver vom *Fp.* 137 °C (Aceton; Zers.). Ausb. 0,57 g (62%). – IR (KBr): $\nu/cm^{-1} = 3260$ (w, br, NH), 1660 (sh), 1650 (sh), 1640 [s, C=O (Chinon)], 1620 (sh), 1580 (s), 1565 (sh, N–C=C–C=O, C=C). – UV (CHCl₃): $\lambda_{max} = 600$ – 400 nm (lg $\varepsilon = 1,0-2,3$; sh), 333 nm (4,29). – MS (140 °C): m/z (rel. Int. [%]) = 323 (14; M⁺), 280 (24), 216 (27), 157 (20), 132 (70), 107 (39), 91 (70), 77 (18), 65 (35), 43 (100). C₂₀H₂₁NO₃ Ber.: C 74,28 H 6,55 N 4,33 (323,4) Gef.: C 74,13 H 6,72 N 4,41.

(Z)-2-{4-[N-(3-Methoxyphenyl)-amino]-2-oxo-pent-3-en-3yl}-methyl-5-methyl-cyclohexa-2,5-dien-1,4-dion (**9e**)

Aus 0,10 g (0,29 mmol) **16e**, wie bei **9a** beschrieben. Gelb orange-farbige Nadeln vom *Fp*. 65 °C [(C_2H_5)_2O]. Ausb. 0,04 g (40%). – IR (KBr): $\nu/cm^{-1} = 3280$ (sh, NH), 1 665 (s), 1 660 [sh, C=O (Chinon)], 1 600 (s, br), 1 580 (sh, N–C=C–C=O, C=C). – UV (CHCl_3): $\lambda_{max} = 600-400$ nm (lg $\varepsilon = 1,0-2,3$), 335 nm (4,28). – MS (150 °C): *m/z* (rel. Int. [%]) = 339 (3; M⁺), 296 (9), 148 (8), 123 (33), 107 (40), 92 (45), 77 (72), 65 (23), 43 (100). C₂₀H₂₁NO₄ Ber.: C 70,78 H 6,24 N 4,13

(339,4) Gef.: C 70,98 H 6,34 N 4,08.

1-[3-(N-Benzylamino)-7-hydroxy-6-methylnaphthalin-2-yl]-ethanon (**17**)

Darstellung siehe **20c**. Rotes Pulver vom *Fp*. 172 °C [(C_2H_5)₂O; Zers.]. Ausb. 0,01 g (5%). – IR (KBr): $\nu/cm^{-1} =$ 3370 (s), 3300 (s, br, OH, NH), 1620 (s), 1530 (s, N–C=C– C=O, C=C). – UV (CHCl₃): $\lambda_{max} = 460$ nm (lg $\varepsilon = 3,41$), 315 nm (3,75; sh), 305 nm (3,99; sh), 263 nm (4,51). – MS (140 °C): m/z (rel. Int. [%]) = 305 (6; M⁺), 288 (1), 214 (8), 199 (15), 186 (25), 106 (100), 91 (31), 65 (27), 43 (31). – ¹H-NMR ([D₆]DMSO): δ /ppm = 9,44 (s, 1H, OH; austauschbar), 8,37–8,20 (m, 2H, 1 aromat. H, NH; davon 1H austauschbar; nach D₂O-Austausch 8,32 s), 7,34 (s, br), 7,27 (s, br; 6H), 7,06 (s, 1H), 6,73 (s, 1H; aromat. H), 4,43 (d, 2H, N– CH₂; ³J = 5,7 Hz; nach D₂O-Austausch s), 2,70 (s, 3H, Aryl– CH₃), 2,23 (s, 3H, H₃C–CO).

 $\begin{array}{cccc} C_{20}H_{19}NO_2 & Ber.: & C \ 78,66 & H \ 6,27 & N \ 4,59 \\ (305,4) & Gef.: & C \ 78,45 & H \ 6,47 & N \ 4,38. \end{array}$

J. Prakt. Chem. 2000, 342, No. 1

3-Acetyl-6-hydroxy-2,7-dimethyl-1-(4-methylphenyl)-chinolinium-perchlorat (18)

0,10 g (0,31 mmol) 9d werden mit 0,10 g (0,60 mmol) 60proz. HClO₄ in 5 ml C₂H₅OH 12 h bei Raumtemp. gerührt. Nach Zusatz von Petrolether (40–60 °C) scheidet sich ein Öl ab, in dem sich nach einigen Tagen Kristalle bilden. Schwach hellgelbe Kristalle vom Fp. 224 °C (CH₃OH; Zers.). Ausb. 0,01 g (8%). – IR (KBr): $\nu/\text{cm}^{-1} = 3500 - 3380 \text{ (m)}, 3250$ (sh, OH), 1710 (sh), 1705 (s, C=O), 1630 (m), 1590 (m), 1 520 (m, C=N, C=C). – MS (280 °C): m/z (rel. Int. [%]) = 321 (1), 306 (0,5; M⁺), 91 (16), 77 (21), 65 (18), 44 (100), 43 (74). – ¹H-NMR ([D₆]DMSO): δ /ppm = 11,36 (s, 1H, OH; austauschbar), 9,60 (s, 1H), 7,68 [s, 1H; aromat. H (Chinoliniumring)], 7,63 ["d", 2H, Aryl-3-H, -5-H (Toluidin); "J" = 7,4 Hz], 7,50 ["d", 2H, Aryl-2-H, -6-H (Toluidin); "J" = 7,4 Hz; AA'BB'-System], 6,97 [s, 1H aromat. (Chinoliniumring), 2,82 (s, 3H), 2,53–2,45 (m, 6H), 2,30 [s, 3H; CH₃ (4×)]. $C_{20}H_{20}NO_2^+ ClO_4^-$ Ber.: C 59,19 N 3,45 H 4,97 Gef.: C 59,07 (405,8)H 4,88 N 3,22.

3-Acetyl-1,2,8-trimethyl-1-aza-spiro[4,5]-deca-2,7-dien-6,9dion (**20b**)

0,10 g (0,40 mmol) **9b** werden in 10 ml absol. $C_2H_5OH 8$ h bei Raumtemp. belassen. Dunkelrote Kristalle vom *Fp*. 145 °C [(C_2H_5)₂O; Zers.]. Ausb. 0,05 g (50%). – IR (KBr): $\nu/cm^{-1} = 1690$ [s, C=O (Cyclohexendion)], 1620 (s), 1550 (s), 1540 (s, N-C=C-C=O, C=C). – UV (CHCl₃): $\lambda_{max} = 550-400$ nm (lg $\varepsilon = 1,4-2,4$; sh), 323 nm (4,33). – UV (CH₃OH): $\lambda_{max} = 500-400$ nm (lg $\varepsilon = 1,7-2,6$), 325 nm (4,38). – MS (80 °C): m/z (rel. Int. [%]) = 247 (2; M⁺), 232 (0,6), 204 (2), 122 (100), 77 (6), 65 (8), 43 (34). C₁₄H₁₇NO₃ Ber.: C 68,00 H 6,93 N 5,66 (247,3) Gef.: C 68,20 H 7,05 N 5,70.

3-(1-Hydroxyethyliden)-1,2,8-trimethyl-1-azonia-spiro [4,5]deca-1,7-dien-6,9-dion perchlorat (**20b**)

0,10 g (0,40 mmol) **20b** werden in 20 ml CH₃OH mit 10 Tropfen 60proz. HClO₄ versetzt; das Produkt wird durch Diisopropylether zur Kristallisation gebracht. Gelbbraune Kristalle vom *Fp*. 108 °C. Ausb. 0,07 g (50%). – IR (KBr): $\nu/cm^{-1} =$ 3 560–3 420 (m, OH), 1 690 [s, C=O (Cyclohexendion)], 1 645 (s), 1 555 (s, C=N, C=C). – UV (CH₃OH): $\lambda_{max} =$ 325 nm (lg $\varepsilon = 4,38$). – MS (220 °C): m/z (rel. Int. [%]) = 248 (0,2; M⁺), 203 (20), 175 (9), 122 (22), 56 (30), 43 (100). C₁₄H₁₈NO₃⁺ ClO₄⁻ (347,8)

Ber.: C 45,97 H 5,51 N 3,83 Gef.: C 45,93 H 5,55 N 3,83.

3-Acetyl-1-benzyl-2,8-dimethyl-1-aza-spiro[4,5]-2,7-decadien-6,9-dion (**20c**)

0,20 g (0,62 mmol) **9c** werden in 10 ml Eisessig 4 h bei Raumtemp. belassen. Man entfernt das Lösungsmittel bei Raumtemp. im Feinvakuum. SC-Trennung von 17: Kieselgel, Länge 10 cm, Ø 1,5 cm, Petrolether (40–60 °C)/(C₂H₅)₂O (60+40), $R_{\rm f}$ = 0,23. Das am Start verbliebene Hauptprodukt **20c** wird mit CHCl₃/Isopropanol (95+5) eluiert ($R_{\rm f}$ = 0,36). Orangenes Pulver vom *Fp.* 63 °C (CH₂Cl₂). Ausb. 0,10 g (50%). – IR (KBr): v/cm⁻¹ = 1 690 (s), 1 685 [sh, C=O (Cyclohexendion)], 1 625 (m), 1 565 (sh), 1 550 (s, N–C=C–C=O, C=C). – UV (CHCl₃): $\lambda_{\rm max}$ = 550–400 nm (lg ε = 1,1–2,3; sh), 323 nm (4,35). – UV (CH₃OH): $\lambda_{\rm max}$ = 500–400 nm

(lg ε = 1,6–2,5; sh), 326 nm (4,37). – MS (120 °C): *m/z* (rel. Int. [%]) = 323 (0,2; M⁺), 280 (0,3), 91 (100), 77 (5), 65 (16), 43 (28).

$C_{20}H_{21}NO_{3}$	Ber.:	C 74,28	H 6,55	N 4,33
(323,4)	Gef.:	C 74,26	H 6,52	N 4,17.

*1-Benzyl-3-(1-hydroxyethyliden)-2,8-dimethyl-1-azonia*spiro[4,5]deca-1,7-dien-6,9-dion perchlorat (**20c**)

0,23 g (0,71 mmol) **9c** werden mit 0,13 g (0,78 mmol) 60proz. HClO₄ in 30 ml C₂H₅OH 24 h bei Raumtemp. gerührt und die Fällung durch Zugabe von (C₂H₅)₂O vervollständigt. Weißes Pulver vom (*Fp.*) 128 °C (CH₃OH). Ausb. 0,13 g (43%). – IR (KBr): $\nu/\text{cm}^{-1} = 3500-3380$ (m, OH), 1690 (sh), 1680 [s, C=O (Cyclohexendion)], 1640 (s), 1550 (s, C=N, C=C). – UV (CH₃OH): $\lambda_{\text{max}} = 325$ nm (lg $\varepsilon = 4,35$). – MS (190 °C): *m/z* (rel. Int. [%]) = 323 (0,1; M⁺), 106 (61), 91 (52), 79 (32), 77 (36), 65 (18), 43 (100).

 $C_{20}H_{22}NO_3^+ ClO_4^-$ (423,9)

Ber.: C 56,68 H 5,23 N 3,30 Gef.: C 56,21 H 5,33 N 3,29.

3-Acetyl-2,8-dimethyl-1-(4-methylphenyl)-1-aza-spiro[4,5] deca-2,7-dien-6,9-dion (**20d**)

a) Aus 0,10 g (0,31 mmol) **16d**, wie bei **9a** beschrieben (Lösungsmittel: absol. C_2H_5OH).

b) Aus 0,20 g (0,61 mmol) **16d**, wie bei **9a** beschrieben (Lösungsmittel: Eisessig). Nach Einengen im Feinvakuum bei Raumtemp. wird das zurückbleibende Öl aus CH_3OH umkristallisiert.

c) Aus 0,20 g (0,61 mmol) 9d, wie bei 20b beschrieben. d) Aus 0,25 g (0,77 mmol) 9d, wie bei 20c beschrieben. Abtrennung der Nebenprodukte durch SC. Das am Start verbliebene Hauptprodukt 20d wird mit CHCl₃/CH₃OH (95+5) eluiert ($R_{\rm f} = 0.6$). Orangen-farbiges Pulver vom Fp. 160 °C (CH₃OH oder C₂H₅OH; Zers.). Ausb. a) 0,06 g (60%), b) 0,07 g (35%), c) 0,16 g (80%), d) 0,19 g (76%). – IR (KBr): $v/cm^{-1} = 1690$ (s), 1685 [sh, C=O (Cyclohexendion)], 1630 (s), 1 620 (sh), 1 550 (sh), 1 540 (s, N-C=C-C=O, C=C). -UV (CHCl₃): $\lambda_{\text{max}} = 550-400$ nm (lg $\varepsilon = 1,3-2,4$; sh), 325 nm (4,47). – MS (150 °C): m/z (rel. Int. [%]) = 323 (2; M⁺), 280 (2), 198 (100), 91 (42), 77 (12), 65 (34), 43 (77). Ber.: C 74,28 H 6,55 N 4.33 $C_{20}H_{21}NO_3$ (323, 4)Gef.: C 73,98 H 6,57 N 4,15.

3-Acetyl-2,8-dimethyl-1-(3-methoxyphenyl)-1-azaspiro[4,5] deca-2,7-dien-6,9-dion (**20e**)

Aus 0,20 g (0,59 mmol) **16e**, wie bei **9e** beschrieben (Lösungsmittel: abs. C₂H₅OH). Orangen-farbiges Pulver vom *Fp*. 119 °C [(C₂H₅)₂O]. Ausb. 0,10 g (50%). – IR (KBr): ν/cm^{-1} = 1 690 [s, C=O (Cyclohexendion)], 1 630 (m), 1 600 (sh), 1 580 (sh), 1 565 (sh, N–C=C–C=O, C=C). – UV (CHCl₃): $\lambda_{max} = 550-400$ nm (lg $\varepsilon = 1,1-2,4$; sh), 325 nm (4,41). – MS (140 °C): m/z (rel. Int. [%]) = 339 (1; M⁺), 296 (2), 214 (99), 148 (19), 123 (12), 107 (21), 92 (35), 77 (55), 65 (25), 43 (100).

 $\begin{array}{cccc} C_{20}H_{21}NO_4 & Ber.: & C~70,78 & H~6,24 & N~4,13 \\ (339,4) & Gef.: & C~70,98 & H~6,28 & N~4,32. \end{array}$

1-[3-(6-Hydroxy-2,7-dimethyl)-chinolyl]-ethanon (21)

a) Aus 0,10 g (0,42 mmol) 16a, wie bei 9a beschrieben (Lö-

sungsmittel: absol. C₂H₅OH, Reaktionsdauer ca. 20 h). b) Aus 0,10 g (0,43 mmol) **9a**, wie bei **20b** beschrieben (Reaktionsdauer ca. 20 h). Hellbeiges Pulver vom *Fp*. 248 °C (C₂H₅OH; Zers.). Ausb. a) 0,04 g (44%), b) 0,05 g (56%). – IR (KBr): *v*/cm⁻¹ = 3 420 (br, OH), 1 685 (sh), 1 680 (s, C=O). – UV (CH₃OH): λ_{max} = 345 nm (lg ε = 2,52), 291 nm (2,89), 256 nm (3,93). – MS (200 °C): *m*/z (rel. Int. [%]) = 215 (51; M⁺), 200 (99), 172 (94), 157 (9), 77 (48), 43 (100). – ¹H-NMR ([D₆]DMSO): δ /ppm = 10,18 (s, 1H, OH; austauschbar), 8,65 [s, 1H, 4-H], 7,69 [s, 1H, 8-H], 7,23 [s, 1H, 5-H], 2,68 (s, 3H), 2,67 (s, 3H; Aryl–C<u>H</u>₃), 2,35 (s, 3H, H₃C–CO). – ¹³C-NMR ([D₆]DMSO): δ /ppm = 200,51 (s, C=O), 154,66 (s, C-6), 152,76 (s, C-2), 143,01 (s, C-8a), 136,52 [d, C-4; ¹J = 156,3 Hz], 133,69 (s), 129,96 (s; C-3/C-4a/C-7), 128,81 [d, C-8; ¹J = 153,8 Hz], 125,23 (s, C-3/C-4a/C-7), 108,07 [d, C-5; ¹J = 159,6 Hz], 29,19 (q, H₃C–CO; ¹J = 127,7 Hz), 24,83 (q, ¹J = 127,9 Hz), 16,98 (q; Aryl–CH₃; ¹J = 125,6 Hz). C₁₃H₁₃NO₂ Ber.: C 72,54 H 6,09 N 6,51 (215,3) Gef.: C 72,26 H 6,38 N 6,34.

Tab. 1 ¹H- und ¹³C-NMR-spektroskopische Daten von 9a-e, 15a-e, 16a-e, 20b-e

non)], 5,05 (s, 2H), 4,99 (s, 2H; OCH2), 3,64 (s, br, 2H, Aryl-CH2),

Nr.	¹ H-NMR δ (ppm)	¹³ C-NMR δ (ppm)
9a	¹ H-NMR (CDCl ₃): 11,5–7,0 (2H, NH ₂ ; austauschbar), 6,63 ["d", 1H, 6-H (Chinon); " J " = 1,5 Hz], 6,44 [t, 1H, 3-H (Chinon); ⁴ J = 2,1 Hz], 3,39 (d, 2H, CH ₂ ; ⁴ J = 2,1 Hz), 2,05 [d, 3H, CH ₃ (Chinon); ⁴ J = 1,5 Hz], 2,00 (s, 3H, H ₃ C–CO), 1,86 (s, 3H, H ₃ C–C–N).	¹³ C-NMR (CDCl ₃): 196,84 (s, H ₃ C– <u>C</u> O), 188,32 (s), 188,19 [s; C=O (Chinon)], 161,19 (s, C= <u>C</u> –N), 148,92 [s, C-2 (Chinon)], 145,98 [s, C-5 (Chinon)], 133,64 [d, C-6 (Chinon); $^{I}J \approx 166$ Hz], 132,24 [d, C-3 (Chinon); $^{I}J = 155,4$ Hz], 97,76 (s, CO– <u>C</u> =C–N), 28,16 (t, CH ₂ ; $^{I}J = 129,8$ Hz), 27,70 (q, H ₃ <u>C</u> –CO; $^{I}J = 126,5$ Hz), 21,23 (q, H ₃ <u>C</u> –C–N; $^{I}J = 128,0$ Hz), 15,43 [q, CH ₃ (Chinon); $^{I}J = 125,9$ Hz].
9b	¹ H-NMR (CDCl ₃): 12,23–11,93 ("s", 1H, NH; austauschbar), 6,62 [q, 1H, 6-H (Chinon); ${}^{4}J = 1,6$ Hz], 6,43 [t, 1H, 3-H (Chinon); ${}^{4}J = 2,4$ Hz], 3,40 (d, 2H, CH ₂ ; ${}^{4}J = 2,4$ Hz), 2,96 (d, 3H, N–CH ₃ ; ${}^{3}J = 4,8$ Hz; nach D ₂ O-Austausch s), 2,05 [d, 3H, CH ₃ (Chinon); ${}^{4}J = 1,6$ Hz], 1,98 (s, 3H, H ₃ C–CO), 1,83 (s, 3H, H ₃ C–C–N).	¹³ C-NMR (CDCl ₃): 194,49 (s, H ₃ C– <u>C</u> O), 188,42 (s), 188,25 [s; C=O (Chinon)], 164,64 (s, C= <u>C</u> –N), 149,22 [s, C-2 (Chinon)], 145,92 [s, C-5 (Chinon)], 133,63 [d, C-6 (Chinon); ¹ <i>J</i> = 165,4 Hz], 132,40 [d, C-3 (Chinon); ¹ <i>J</i> = 165,5 Hz], 96,76 (s, CO– <u>C</u> =C–N), 30,01 (q, N–CH ₃ ; ¹ <i>J</i> = 126,3 Hz), 28,54 (t, CH ₂ ; ¹ <i>J</i> = 124,7 Hz), 27,52 (q, H ₃ C–CO; ¹ <i>J</i> = 126,3 Hz), 15,42 [q, CH ₃ (Chinon)], 14,80 (q, H ₃ <u>C</u> –C–N; ¹ <i>J</i> = 129,3 Hz).
9c	¹ H-NMR (CDCl ₃): 12,64–12,30 (m, 1H, NH; austauschbar), 7,36–7,19 (m, 5H, C ₆ H ₅), 6,62 [q, 1H, 6-H (Chinon); ${}^{4}J \approx 1,5$ Hz], 6,44 [t, 1H, 3-H (Chinon); ${}^{4}J = 2,1$ Hz), 4,50 (d, 2H, N–CH ₂ ; ${}^{3}J = 6,0$ Hz; nach D ₂ O-Austausch s), 3,42 (d, 2H, CH ₂ ; ${}^{4}J = 2,1$ Hz), 2,07 [d, 3H, CH ₃ (Chinon); ${}^{4}J \approx 1,5$ Hz], 2,02 (s, 3H, H ₃ C–CO), 1,82 (s, 3H, H ₃ C–C–N).	¹³ C-NMR (CDCl ₃): 195,25 (s, H ₃ C- <u>C</u> O), 188,32 (s), 188, 15 [s; C=O (Chinon)], 163,64 (s, C= <u>C</u> –N), 149,05 [s, C-2 (Chinon)], 145,93 [s, C-5 (Chinon)], 137,85 (s, Aryl–C-1), 133,60 [d, C-6 (Chinon); ¹ <i>J</i> ≈ 160 Hz], 132,37 [d, C-3 (Chinon); ¹ <i>J</i> ≈ 160 Hz], 128,92 (d, Aryl–C-3, -C-5; ¹ <i>J</i> ≈ 160 Hz), 127,54 (d, Aryl–C-4; ¹ <i>J</i> ≈ 160 Hz), 126,78 (d, Aryl–C-2, C-6; ¹ <i>J</i> ≈ 160 Hz), 97,58 (s, CO– <u>C</u> =C–N), 47,32 (t, N–CH ₂ ; ¹ <i>J</i> = 126,7 Hz), 28,50 (t, <u>C</u> H ₂ –CO; ¹ <i>J</i> = 127,6 Hz), 27,72 (q, H ₃ <u>C</u> –CO; ¹ <i>J</i> = 126,7 Hz), 15,41 [q, CH ₃ (Chinon); ¹ <i>J</i> = 128,1 Hz], 15,11 (q, H ₃ <u>C</u> –C–N; ¹ <i>J</i> = 128,1 Hz).
9d	¹ H-NMR (CDCl ₃): 13,68 (s, br, 1H, NH; aust.), 7,16 ("d", 2H, Aryl-3-H, -5-H; " J " = 8,5 Hz), 6,96 ("d", 2H, Aryl-2-H, -6-H; " J " = 8,5 Hz; AA'BB'-System), 6,63 [s, br, 1H, 6-H (Chinon)], 6,52 [s, br, 1H, 3-H (Chinon)], 3,46 (s, br, 2H, CH ₂), 2,34 (s, br, 3H, Aryl-C <u>H₃</u>), 2,06 ["s", br, 6H, CH ₃ (Chinon), H ₃ C–CO], 1,85 (s, 3H, H ₃ C–C–N).	¹³ C-NMR (CDCl ₃): 195,89 (s, H ₃ C- <u>C</u> O), 188,26 (s), 188,17 [s; C=O (Chinon)], 161,20 (s, C= <u>C</u> –N), 148,82 [s, C-2 (Chinon)], 146,00 [s, C-5 (Chinon)], 136,11 (s, Aryl–C-1), 135,83 (s, Aryl–C-4), 133,64 [d, C-6 (Chinon); ^{1}J = 159,5 Hz], 132,28 [d, C-3 (Chinon); ^{1}J ≈ 165,2 Hz], 129,75 (d, Aryl–C-3, -C-5; ^{1}J = 157,0 Hz), 125,53 (d, Aryl–C-2, -C-6; ^{1}J = 158,2 Hz), 98,88 (s, CO– <u>C</u> =C-N), 28,51 (t, CH ₂ ; ^{1}J = 127,7 Hz), 27,70 (q, H ₃ <u>C</u> –CO; ^{1}J = 126,6 Hz), 20,92 (q, Aryl– <u>C</u> H ₃), 16,45 (q, H ₃ <u>C</u> –C–N), 15,43 [q, CH ₃ (Chinon)].
9e	¹ H-NMR (CDCl ₃): 13,72 (s, br, 1H, NH; austauschbar), 7,26 ("t", 1H, Aryl-5-H; " <i>J</i> " = 7,6 Hz), 6,84–6,49 (m, 5H, Aryl-2-H, -4-H, -6-H, Chinon-3-H, -6-H), 3,80 (s, 3H, OCH ₃), 3,48 (d, 2H, CH ₂ ; ⁴ <i>J</i> = 2,1 Hz), 2,07 (s, 3H, H ₃ C–CO), 2,06 [d, 3H, CH ₃ (Chinon); ⁴ <i>J</i> = 1,3 Hz], 1,90 (s, 3H, H ₃ C–C–N).	
15a	¹ H-NMR (CDCl ₃): 12,0–7,5 (2H, NH ₂ ; austauschend), 7,41–7,25 [m, 10H aromat. (Bz; $2\times$)], 6,77 (s, 1H), 6,56 [s, 1H; Aryl-3-H, -6-H (Hydrochinon)], 5,04 (s, 2H), 4,97 (s, 2H; OCH ₂), 3,55 (s, 2H, Aryl–C <u>H₂</u>), 2,26 (s, 3H, Aryl–C <u>H₃</u>), 1,97 (s, 3H, H ₃ C–CO), 1,72 (s, 3H, H ₃ C–C–N).	
15b	¹ H-NMR (CDCl ₃): 12,13 (m, br, 1H, NH; austauschend), 7,47–7,13 [m, 10H aromat. (Bzl; 2×)], 6,77 (s, 1H), 6,53 [s, 1H; Aryl-3-H, -6-H (Hydrochinon)], 5,00 (s, 2H), 4,95 (s, 2H; OCH ₂), 3,53 (s, 2H, Aryl–C <u>H₂</u>), 2,90 (d, 3H, N–CH ₃ ; ${}^{3}J$ = 3,6 Hz; nach D ₂ O-Aust. s), 2,27 (s, 3H, Aryl–C <u>H₃</u>), 1,93 (s, 3H, H ₃ C–CO), 1,63 (s, 3H, H ₃ C–C–N).	
15c	¹ H-NMR (CDCl ₃): 12,59 ("s", br, 1H, NH; austauschbar), 7,47–7,23 [m, 15H aromat. (Bzl; $3\times$)], 6,76 (s, 1H), 6,58 [s, 1H; Aryl-3-H, -6-H (Hydrochinon)], 5,04 (s, 2H), 4,92 (s, 2H; OCH ₂), 4,47 (d, 2H, N–CH ₂ ; ³ <i>J</i> = 5,6 Hz; nach D ₂ O-Austausch s), 3,59 (s, 2H, Aryl–CH ₂), 2,25 (s, 3H, Aryl–CH ₃), 2,01 (s, 3H, H ₃ C–CO), 1,70 (s, 3H, H ₃ C–C–N).	
15d	¹ H-NMR (CDCl ₃): 13,71 (s, 1H, NH; austauschbar), 7,49–7,25 [m, 10H aromat. (Bzl; 2×)], 7,15 ["d", 2H, Aryl-3-H, -5-H (Toluidin); " <i>J</i> " = 8,3 Hz], 6,94 ["d", 2H, Aryl-2-H, -6-H (Toluidin); " <i>J</i> " = 8,3 Hz; AA'BB'-System], 6,78 (s, 1H), 6,63 [s, 1H; Aryl-3-H, -6-H (Hydrochi-	

Tab. 1 (Fortsetzung)

Nr.	¹ H-NMR δ (ppm)	¹³ C-NMR δ (ppm)
	2,34 [s, 3H, Aryl–C <u>H</u> ₃ (Toluidin)], 2,26 [s, 3H, Aryl–C <u>H</u> ₃ (Hydrochinon)], 2,04 (s, 3H, CH ₃ –CO), 1,78 (s, 3H, H ₃ C–C–N).	
15e	¹ H-NMR (CDCl ₃): 13,75 (s, 1H, NH; austauschbar), 7,41–7,14 [m, 12H aromat. (2×Bzl, 2H von Anisidin], 6,78 [s, 1H, Aryl-3-H / -6-H (Hydrochinon)], 6,69–6,62 [m, 3H, Aryl-3-H/-6-H (Hydrochinon), 2H von Anisidin], 5,06 (s, 2H), 4,99 (s, 2H; OCH ₂), 3,80 (s, 3H, OCH ₃), 3,64 (s, 2H, Aryl-C <u>H₂</u>), 2,26 (s, 3H, Aryl-C <u>H₃</u>), 2,04 (s, 3H, H ₃ C-CO), 1,83 (s, 3H, H ₃ C-C–N).	
16a	¹ H-NMR ([D ₆]DMSO): 10,7–10,0 (s, 1H, NH; austauschbar), 8,43 (s, 1H), 8,30 (s, 1H, OH; austauschbar), 7,5–7,0 (s, 1H, NH; austauschbar), 6,47(s, 1H), 6,34 (s, 1H; Aryl-3-H, -6-H), 3,32 (s, br, 2H, Aryl–C <u>H</u> ₂), 1,98 (s, br, 3H, Aryl–C <u>H</u> ₃), 1,85 (s, 3H, H ₃ C–CO), 1,80 (s, 3H, H ₃ C–C–N).	
16b	¹ H-NMR ([D ₆]DMSO): 12,00–11,75 (m, 1H, NH; austauschbar), 8,44 (s, 1H), 8,26 (s, 1H; OH; austauschbar), 6,48 (s, 1H), 6,33 (s, 1H; Aryl-3-H, -6-H), 3,37 (s, 2H, Aryl-C \underline{H}_2), 2,91 (d, 3H, N–CH ₃ ; ³ <i>J</i> = 5,2 Hz; nach D ₂ O-Aust. s), 1,98 (s, 3H, Aryl–C \underline{H}_3), 1,88 (s, 3H, H ₃ C–CO), 1,81 (s, 3H, H ₃ C–C–N).	
16c	¹ H-NMR ([D ₆]DMSO): 12,36 (t, 1H, NH; ${}^{3}J = 5,8$ Hz; austauschbar), 8,45 (s, 1H), 8,30 (s, 1H; OH; austauschbar), 7,38–7,27 ("s", 5H, C ₆ H ₅), 6,48 (s, 1H), 6,37 [s, 1H; Aryl-3-H, -6-H (Hydrochinon)], 4,53 (d, 2H, N–CH ₂ ; ${}^{3}J = 5,8$ Hz; nach D ₂ O-Austausch s), 3,39 (s, 2H, Aryl–C <u>H</u> ₂), 1,99 (s, 3H, Aryl–C <u>H</u> ₃), 1,91 (s, 3H, H ₃ C–CO), 1,83 (s, 3H, H ₃ C–C–N).	
16d	¹ H-NMR ([D ₆]DMSO): 13,67 (s, 1H, NH; austauschbar), 8,53 (s, 1H), 8,36 (s, 1H; OH; austauschbar), 7,20 ["d", 2H, Aryl-3-H, -5-H (Toluidin); "J" = 8,3 Hz], 7,03 ["d", 2H, Aryl-2-H, -6-H (Toluidin); "J" = 8,3 Hz; AA'BB'-System], 6,50 (s, 1H), 6,41 [s, 1H; Aryl-3-H, 6-H (Hydrochinon)], 3,46 (s, br, 2H, Aryl- $C\underline{H}_2$), 2,29 [s, 3H, Aryl- $C\underline{H}_3$ (Toluidin)], 1,99 ["s", br, 6H, Aryl- $C\underline{H}_3$ (Hydrochinon), H ₃ C-CO], 1,90 (s, 3H, H ₃ C-C–N).	
16e	¹ H-NMR ([D ₆]DMSO): 13,67 (s, 1H, NH; austauschbar), 8,53 (s, 1H), 8,34 (s, 1H; OH; austauschbar), 7,29 ["t", 1H, Aryl-5-H (Anisidin); "J" = 8,3 Hz], 6,83–6,67 [m, 3H, Aryl-2-H, -4-H, -6-H (Anisidin)], 6,51 (s, 1H), 6,41 [s, 1H; Aryl-3-H/-6-H (Hydrochinon)], 3,76 (s, 3H, OCH ₃), 3,48 (s, br, 2H, Aryl-C <u>H₂</u>), 2,00 ["s", 6H, Aryl-C <u>H₃</u> (Hydrochinon), H ₃ C-CO], 1,96 (s, 3H, H ₃ C-C–N).	
20b	¹ H-NMR (CDCl ₃): 6,72 (q, 1H, 7-H; ${}^{4}J = 1,6$ Hz), 3,14/2,99 [dd, 2H, 4-H ₂ ; ${}^{2}J = 16,0$ Hz; AB-System), 2,99/2,91 [dd, 2H, 10-H ₂ ; ${}^{2}J = 13,6$ Hz; AB-System), 2,83 (s, br, 3H, N-CH ₃), 2,33 (s, br, 3H, H ₃ C-CO), 2,05 (s, br, 6H, H ₃ C-C-N, 8-CH ₃). ¹ H-NMR ([CD ₃ OD]): 6,76 ("d", br, 1H, 7-H; "J" = 0,8 Hz), 2,95/2,78 (dd, 2H, 4-H ₂ /10-H ₂ ; ${}^{2}J = 14,4$ Hz; AB-System), 2,89 (s, br, 3H, N-CH ₃), 2,36 (s, br, 3H, H ₃ C-CO), 2,02 ("s", br, 6H, 8-CH ₃ , H ₃ C-C-N).	¹³ C-NMR (CDCl ₃): 195,91 (s), 194,44 (s), 191,08 (s; C=O), 160,66 (s, C-2), 151,44 (s, C-8), 137,36 (d, C-7; ${}^{1}J = 164,8$ Hz), 104,34 (s, C-3), 74,06 (s, C-5), 46,78 (t, C-10; ${}^{1}J = 134,7$ Hz), 41,09 (t, C-4; ${}^{1}J = 129,4$ Hz), 29,73 (q, N–CH ₃ ; ${}^{1}J = 137,2$ Hz), 28,91 (q, H ₃ C–CO; ${}^{1}J = 126,4$ Hz), 16,14 (q, 8-CH ₃ ; ${}^{1}J = 131,4$ Hz), 13,11 (q, 2-CH ₃ ; ${}^{1}J = 129,2$ Hz).
20b	perchlorat : ¹ H-NMR ([D ₆]DMSO): 6,95 ("d", 1H, 7-H; "J" = 1,5 Hz), 5,9–5,5 (s, 3H, OH, H ₂ O; aust.), 3,73/2,98 [dd, 2H, 4-H ₂ ; ² J = 15,6 Hz; AB-System], 3,14 (s, 3H, N–CH ₃), 3,01/2,83 [dd, 2H, 10-H ₂ ; ² J = 14,4 Hz; AB-System], 2,54 (s, 3H, CH ₃), 2,10 (s, 3H, CH ₃), 1,98 (d, 3H, 8-CH ₃ ; ³ J = 1,5 Hz).	
20c	¹ H-NMR (CDCl ₃): 7,41–7,06 (m, 5H, C ₆ H ₅), 6,71 ("d", br, 1H, 7-H; "J" = 1,3 Hz), 4,77/4,06 (dd, 2H, N–CH ₂ ; ² J = 17,8 Hz; AB-System), 3,10/2,88 [dd, 2H, 4-H ₂ ; ² J = 13,7 Hz; AB-System], 2,95 ["s", br, 2H, 10-H ₂], 2,29 (s, 3H, H ₃ C–CO), 2,08 (s, 3H, H ₃ C–C–N), 2,01 (d, 3H, 8-CH ₃ ; ⁴ J = 1,3 Hz). ¹ H-NMR (CD ₃ OD): 7,30 (s, br, 5H, C ₆ H ₅), 6,75 (q, 1H, 7-H; ⁴ J = 1,4 Hz), 4,8–4,3 (dd, 2H, N–CH ₂ ; ² J ≈ 18 Hz; AB- System), 3,27/2,97 [dd, 2H, 4-H ₂ ; ² J = 15,5 Hz; AB-System], 2,99 ["s", 2H, 10-H ₂], 2,26 (s, 3H, H ₃ C–CO), 2,06 (s, 3H, H ₃ C–C–N), 1,99 (d, 3H, 8-CH ₃ ; ⁴ J = 1,4 Hz). Dieses Spektrum ergibt sich auch aus 9c nach 24 std. Stehen in CD ₃ OD.	¹³ C-NMR (CD ₃ OH): 197,01 (s), 196,03 (s), 193,53 (s; C=O), 165,54 (s, C-2), 152,56 (s, C-8), 139,38 (s, Aryl–C-1), 137,57 (d, C-7; ${}^{1}J = 156,3$ Hz), 129,86 (d, Aryl–C-3, -C-5; ${}^{1}J = 157,3$ Hz), 128,41 (d, Aryl–C-4; ${}^{1}J = 161,0$ Hz), 127,26 (d, Aryl–C-2, -C-6; ${}^{1}J = 158,2$ Hz), 106,00 (s, C-3), 76,44 (s, C-5), 56,59 (t, N–CH ₂), 48,90 (t, C-10), 41,57 (t, C-4), 28,55 (q, H ₃ C–CO; ${}^{1}J = 126,0$ Hz), 16,05 (q, 8-CH ₃ ; ${}^{1}J = 127,8$ Hz), 14,24 (q, 2-CH ₃ ; ${}^{1}J = 129,6$ Hz).
20c	perchlorat : ¹ H-NMR ([D ₆]DMSO): 7,37–7,19 ("s", 5H, C ₆ H ₅), 6,92 ("d", 1H, 7-H; " J " = 1,4 Hz), 4,97/4,59 (dd, 2H, N–CH ₂ ; ² J = 17,8 Hz; AB-System), 3,48/3,01 [dd, 2H, 4-H ₂ ; ² J = 15,4 Hz; AB-System], 3,30–2,70 [m, 2H, 10-H ₂], 2,34 (s, 3H, H ₃ C–CO), 2,08 (s, 3H, 2-CH ₃), 1,94 (d, 3H, 8-CH ₃ ; ⁴ J = 1,4 Hz).	¹³ C-NMR ([D ₆]DMSO): 194,63 (s), 192,54 (s; C=O), 179,95 (s), 174,44 (s; C-2, = C–OH), 150,86 (s, C-8), 135,90 (d, C-7; ¹ <i>J</i> = 172,7 Hz), 135,59 (s, Aryl–C-1), 128,71 (d, Aryl–C-3, -C-5; ¹ <i>J</i> = 161,6 Hz), 127,42 (d, Aryl–C-4; ¹ <i>J</i> = 165,8 Hz), 126,02 (d, Aryl–C-2, -C-6; ¹ <i>J</i> = 158,7 Hz), 106,20 (s, C-3), 77,04 (s, C-5), 48,48 (t), 46,85 (t), 35,32 (t; N–CH ₂ , C-4, C-10), 23,39 (q, H ₃ C–C–OH; ¹ <i>J</i> ≈ 128 Hz), 15,75 (q), 15,56 (q; 8-CH ₃ ,2-CH ₃ ; ¹ <i>J</i> ≈ 131 Hz).
20d	¹ H-NMR (CDCl ₃): 7,20 ("d", 2H, Aryl-3-H, -5-H; " J " = 9,3 Hz), 7,05 ("d", 2H, Aryl-2-H, -6-H; " J " = 9,3 Hz; AA'BB'-System), 6,65 (q, 1H,	¹³ C-NMR (CDCl ₃): 195,82 (s), 194,40 (s), 191,82 (s; C=O), 159,58 (s, C-2), 150,99 (s, C-8), 138,62 (s, Aryl–C-1), 137,09 (d, C-7; ¹ <i>J</i> =

FULL PAPER

Tab.	(Fortsetzung)	
Nr.	¹ H-NMR δ (ppm)	¹³ C-NMR δ (ppm)
	7-H; ${}^{4}J = 1,5$ Hz), 3,16/2,97 (ddd, 2H, 4-H ₂ ; ${}^{2}J \approx 14$ Hz; ${}^{5}J \approx 1$ Hz), 2,98 ('s", 2H, 10-H ₂), 2,34 (s, 3H, Aryl–C <u>H</u> ₃), 2,13 (s, 3H, H ₃ C–CO), 2,09 (d, 3H, 2-CH ₃ ; ${}^{5}J \approx 1$ Hz), 1,95 (d, 3H, 8-CH ₃ ; ${}^{4}J = 1,5$ Hz).	164,7 Hz), 134,62 (s, Aryl–C-4), 130,29 (d, Aryl–C-3, -C-5; ${}^{1}J = 161,2$ Hz), 130,14 (d, Aryl–C-2, -C-6; ${}^{1}J = 161,2$ Hz), 106,41 (s, C-3), 74,60 (s, C-5), 48,69 (t, C-10; ${}^{1}J = 130,6$ Hz), 41,71 (t, C-4; ${}^{1}J = 134,6$ Hz), 29,01 (q, H ₃ <u>C</u> –CO; ${}^{1}J = 126,4$ Hz), 21,05 (q, Aryl– <u>C</u> H ₃), 15,97 (q, 8-CH ₃ ; ${}^{1}J = 129,6$ Hz), 14,85 (q, 2-CH ₃ ; ${}^{1}J = 129,6$ Hz).
20e	¹ H-NMR (CDCl ₃): 7,28 ("t", 1H, Aryl-5-H; " <i>J</i> " \approx 8 Hz), 6,95–6,66 (m, 4H, 7-H, Aryl-2-H, -4-H, -6-H), 3,79 (s, 3H, OCH ₃), 3,16/2,97 (dd, 2H, 4-H ₂ ; ² <i>J</i> \approx 15 Hz; AB-System), 2,99 ("s", 2H, 10-H ₂), 2,14 ("s", br, 6H, H ₃ C–CO, 2-CH ₃), 1,96 (d, 3H, 8-CH ₃ ; ⁴ <i>J</i> = 1,4 Hz).	¹³ C-NMR (CDCl ₃): 195,75 (s), 194,37 (s), 191,96 (s; C=O), 160,44 (s, C-2), 159,05 (s, Aryl–C-3), 151,03 (s, C-8), 138,56 (s, Aryl–C-1), 137,07 (d, C-7; ¹ <i>J</i> = 164,7 Hz), 130,09 (d, Aryl–C-5; ¹ <i>J</i> = 162,2 Hz), 122,38 [d, Aryl–C-6; ¹ <i>J</i> = 156,7 Hz], 116,04 [d, Aryl–C4; ¹ <i>J</i> = 161,1 Hz], 114,13 [d, Aryl–C-2; ¹ <i>J</i> = 156,3 Hz], 106,87 (s, C-3), 74,59 (s, C-5), 55,42 (q, OCH ₃ ; ¹ <i>J</i> = 144,2 Hz), 48,70 (t, C-10; ¹ <i>J</i> = 136,9 Hz), 41,82 (t, C-4; ¹ <i>J</i> = 133,0 Hz), 29,06 (q, H ₃ C–C0; ¹ <i>J</i> = 126,5 Hz), 15,99 (q, 8-CH ₃ ; ¹ <i>J</i> = 129,6 Hz), 14,91 (q, 2-CH ₃ ; ¹ <i>J</i> = 129,6 Hz).

Literatur

- 5. Mitt.: U. Kuckländer, U. Lessel, Arch. Pharm. (Weinheim) 1994, 327, 143
- [2] V. G. Granik, V. M. Lynbchanskaya, T. I. Mukhanova, Khim. Farm. Zh. 1993, 27, 37; Engl. transl. 413
- [3] U. Meyer, Dissertation, Heinrich–Heine-Universität Düsseldorf 1991
- [4] a.) F. Eiden, U. Kuckländer, Arch. Pharm. (Weinheim) 1971, 304, 57; b.) Arch. Pharm (Weinheim) 1973, 306, 446
- [5] U. Kuckländer, W. Hühnermann, Arch. Pharm. (Weinheim) **1979**, *312*, 515
- [6] V. I. Shvedov, E. K. Panisheva, T. F. Vlasova, A. N. Grinev, Khim. Geterotsikl. Soedin. 1973, 10, 1354; Engl. transl. 1225
- [7] V. M. Lynbchanskaya, L. M. Alekseeva, V. N. Granik, Khim. Geterotsikl. Soedin. **1992**, *1*, 40
- [8] V. M. Lyubchanskaya, L. S. Sarkisova, L. M. Alekseeva, E. F. Kuleschova, Ju. H. Scheinker, V. G. Granik, Khim. Farm. Zh. 1992, 9, 108
- [9] U. Kuckländer, P. Ulmer, K. Kuna, H. Töberich, Chem. Ber. 1989, 122, 209
- [10] U. Kuckländer, U. Herweg-Wahl, K. Kuna, Arch. Pharm. (Weinheim) 1991, 324, 7
- [11] a) U. Bastian, Dissertation, Heinrich-Heine-Universität Düsseldorf 1986; b) U. Kuckländer, A. Hilgeroth, W. Poll, J. Prakt. Chem. im Druck (Ms. 9-093 JPC)

- [12] H. Sterk, Monatsh. Chem. **1968**, *99*, 2378
- [13] A. S. R. Anjaneyulu, B. M. Isaa, J. Chem. Soc. Perkin Trans. 1 1990, 993
- [14] S. I. Yakimovitch, L. A. Kayukova, V. A. Khrustalev, E. A. Tsatsenkina, T. I. Temnikova, Zh. Obshch. Khim. 1977, 12, 2507; Engl. transl. 2332
- [15] U. Kuckländer, A. Hilgeroth, Arch. Pharm. (Weinheim) 1994, 327, 287
- [16] U. Kuckländer, U. Henze, Arch. Pharm. (Weinheim) 1984, 317, 394
- [17] J. T.Adams, C. R. Hauser, J. Am. Chem. Soc. 1944, 66, 1220
- [18] U. Kuckänder, P. Ulmer, G. Zerta, Chem. Ber. **1989**, *122*, 1493

Korrespondenzanschrift: Prof. Dr. U.Kuckländer Heinrich Heine Universität Institut für Pharmazeutische Chemie D-40225 Düsseldorf Fax: Internat.code (0)211 811 4984

e-Mail: kucklaen@uni-duesseldorf.de